Search results for "Chromatin Immunoprecipitation Sequencing"

showing 4 items of 4 documents

Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins.

2020

AbstractPericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that ev…

0301 basic medicineEuchromatinHeterochromatinEvolutionMolecular biologyAdaptation Biologicallcsh:MedicineInsulator (genetics)Chromatin remodelingArticleEvolutionary geneticsEvolution Molecular03 medical and health sciences0302 clinical medicineDrosophilidaeHeterochromatinAnimalsDrosophila ProteinsNucleotide Motifslcsh:ScienceEye ProteinsPromoter Regions GeneticGenePericentric heterochromatinPhylogenyGeneticsMultidisciplinarygeenitBinding Sitesbiologylcsh:RfungiChromosome MappingPromoterDNAbiology.organism_classificationChromatinDNA-Binding Proteins030104 developmental biologyGene Expression RegulationGenetic LociChromatin Immunoprecipitation SequencingMolecular evolutionlcsh:QDrosophilaTranscription Initiation SiteTranscription030217 neurology & neurosurgeryProtein BindingScientific reports
researchProduct

7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.

2019

Abstract Background Knowledge of the three-dimensional structure of the genome is necessary to understand how gene expression is regulated. Recent experimental techniques such as Hi-C or ChIA-PET measure long-range chromatin interactions genome-wide but are experimentally elaborate, have limited resolution and such data is only available for a limited number of cell types and tissues. Results While ChIP-seq was not designed to detect chromatin interactions, the formaldehyde treatment in the ChIP-seq protocol cross-links proteins with each other and with DNA. Consequently, also regions that are not directly bound by the targeted TF but interact with the binding site via chromatin looping are…

CCCTC-Binding Factorlcsh:QH426-470Protein Conformationlcsh:Biotechnologygenetic processesComputational biologyBiologyGenomeChromosomesBioconductorChromosome conformation capture03 medical and health sciences0302 clinical medicine6CHi-Clcsh:TP248.13-248.65GeneticsTranscription factorsHumansnatural sciencesNucleotide Motifs4CChIA-PET030304 developmental biologyChromatin loops0303 health sciencesThree-dimensional genome architectureChromatinChromatinChIP-seq7Clcsh:Genetics5CCTCFChromatin Immunoprecipitation SequencingHuman genomeDNA microarrayChIA-PET3CPrediction030217 neurology & neurosurgeryChromatin interactionsBiotechnologyHeLa CellsResearch ArticleBMC genomics
researchProduct

Computational identification of cell-specific variable regions in ChIP-seq data.

2019

ABSTRACT Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify genome-wide DNA regions bound by proteins. Several sources of variation can affect the reproducibility of a particular ChIP-seq assay, which can lead to a misinterpretation of where the protein under investigation binds to the genome in a particular cell type. Given one ChIP-seq experiment with replicates, binding sites not observed in all the replicates will usually be interpreted as noise and discarded. However, the recent discovery of high-occupancy target (HOT) regions suggests that there are regions where binding of multiple transcription factors can be identified. To investigate these regions,…

Cell typeAcademicSubjects/SCI00010Computational biologyPlasma protein bindingBiologyGenomeCell LineEvolution Molecular03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineNarese/3Cell Line TumorGeneticsAnimalsHumansEpigeneticsBinding sitePromoter Regions GeneticTranscription factorEmbryonic Stem Cells030304 developmental biology0303 health sciencesPrincipal Component AnalysisBinding SitesNucleotidesGenetic VariationPromoterGenomicsChromatinchemistryCpG siteMCF-7 CellsChromatin Immunoprecipitation SequencingMethods OnlineR-Loop StructuresK562 CellsChromatin immunoprecipitation030217 neurology & neurosurgeryFunction (biology)DNATranscription FactorsNucleic acids research
researchProduct

TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay

2019

The authors present a novel method for obtaining chromatin profiles from low cell numbers without prior nuclei isolation. The method is successfully implemented in generating epigenetic profile from 100 cells with high signal-to-noise ratio.

Health Toxicology and MutagenesisPlant ScienceComputational biologySignal-To-Noise RatioBiochemistry Genetics and Molecular Biology (miscellaneous)GenomeDNA sequencingEpigenesis GeneticHistones03 medical and health sciences0302 clinical medicineTranscriptional regulationMethodsAnimalsHumansEpigenetics030304 developmental biologyWhole genome sequencing0303 health sciencesEcologybiologyWhole Genome SequencingChemistryHigh-Throughput Nucleotide SequencingChip11Histonebiology.proteinChromatin Immunoprecipitation SequencingDrosophilaK562 CellsChromatin immunoprecipitation030217 neurology & neurosurgerySoftwareLife Science Alliance
researchProduct